(3) Describe what further experiments and modeling are needed to evaluate the use of solenoids versus quads for future WDM experiments

Art Molvik & HCX and NDCX Groups

the Heavy-Ion Fusion Science Virtual National Laboratory
(HIFS-VNL)

February 22, 2007

This work performed under the auspices of the U.S Department of Energy by University of California, Lawrence Livermore and Lawrence Berkeley National Laboratories under contracts No. W-7405-Eng-48 and DE-AC02-05CH11231.

HIFS e-cloud effort

HCX Experiment

Art Molvik

Michel Kireeff Covo

Frank Bieniosek

Peter Seidl

NDCX Experiment

Peter Seidl

Joshua Coleman

Prabir Roy

Frank Bieniosek

Art Molvik

Simulation

Jean-Luc Vay

Bill Sharp

Ron Cohen

Alex Friedman

Dave Grote

Steve Lund

Quads VS solenoids – two issues

- (1) Maximum ion-beam current, and the associated emittance in solenoids and quadrupole magnets
- (2) Degradation of (1) by electron (and gas) cloud effects and their mitigation.

Quads VS solenoids – two issues

- (1) Measure and model the maximum ion-beam current, and the associated emittance, which can be transported in solenoids and quadrupole magnets; and compare with theory (which predicts that significantly higher line charge can be transported at low energy in a solenoid). A subset of this is to measure Brillouin transport (or departures from it) in solenoids.
- (2) Measure and model electron (and gas) cloud effects and determine how those affect the maximum beam current and emittance, degrade performance relative to electron (and gas)-free operation, and how well these effects can be mitigated.

Maximum ion-beam current, and the associated emittance – in solenoids and quadrupole magnets

- Electrostatic quads: Lionel Prost thesis, and Phys. Rev. Special
 Topics Accelerators and Beams (PRSTAB) 8, 020101 (2005):
 Applications at low energy, clears e-clouds.
- Magnetic quads: Line charge increases with beam velocity
- Solenoids: Highest line charge at low energies would like to observe Brillouin flow.

Beam current and envelope agrees with envelope codes in each case: implies good agreement between experiment and theory.

Theory: E. P. Lee, R. J. Briggs, "The solenoidal transport option: IFE drivers, near term research facilities, and beam dynamics," Report LBNL 40774, Sept. 1997.

Degradation of (1) by electron (and gas) cloud effects

- Electrostatic quads: Clears e-clouds, ok if e- sources small
- Magnetic quads:
 - See effects at high e- line charge
 - Can measure e- line charge [PRL 97, 054801 (2006)]
 - Need to determine thresholds for allowable electron charge from each type of source: ionization, beam-tube & end-wall emission.
- Solenoids:
 - See effects at high e- line charge
 - Need to measure e- line charge
 - Need to determine thresholds for allowable electron charge from each type of source: ionization, beam-tube & end-wall emission.

1st measurement of absolute electron cloud density* – used retarding field analyzer (RFA) and clearing electrodes

- RFA measures max.
 expelled ion energy E_i
 (scan bias on successive pulses)
- $E_i = \phi_b$, max. beam potential
- ϕ_b depressed by electrons
- Clearing electrode current: infer minimum n_e, and corroborate higher n_e

Absolute electron fraction can be inferred from RFA and clearing electrodes

Beam neutralization	B, C, & S on	B, C, off S on	B, C, S off
Clear. Electr. A	~ 7%	~ 25%	~ 89%
RFA	(~ 7%)	~ 27%	~ 79%

*Michel Kireeff Covo, Phys. Rev. Lett. 97, 054801 (2006).

Heavy-ion beams can be degraded by electron clouds

- Compact phase-space essential to a small focal spot
- Ideal beam has minimum phase space

Artificially high electron density to exaggerate electron effects

 Electrons can distort phase space, greatly increasing area of focal spot.

x = horizontal location of ion

x' = dx/dz of ion (transverse/axial)

ldeal

We have begun experiments studying e-clouds in solenoid magnets

Electrodes installed in center of each solenoid and between solenoids to provide control of e-emission and trapping on outer magnetic field lines.

Trap 1

E-cloud electrode bias affects apertured beam quality

New accelerators for WDM and HIF must push performance to cost ratio, and guarantee successful operation

- Electron and gas physics likely to determine operating limits, e.g.:
 - Maximum beam current
 - Compactness how close can beam tube approach beam?
 - Electron-ion instabilities (as seen in PSR)
- Devise mitigation techniques to increase limits
 - Clearing electrodes remove electrons
 - Roughened walls reduce electron and gas generation
 - Materials or coatings reduce electron and gas generation
 - Halo scraping by apertures reduces electron and gas generation

Control of accelerator beam-surface interactions is as important as control of MFE plasma-surface interactions

Charged particle beams transport efficiently with 'strong focusing', alternating gradient magnetic quadrupoles

Primary:

- Ionization of background or desorbed gas
- Ion-induced gas & electron emission from
 - expelled ions hitting vacuum wall
 - beam halo scraping

Secondary:

- secondary emission from electron-wall collisions

The High Current Experiment (HCX) is a small, flexible heavy-ion accelerator (at LBNL)

Diagnostics within magnetic quadrupole bores

FLL: 8-biased electrodes at ends of field lines: measure capacitive signal + electrons from wall

Capacitive and gridshielded electrodes

Outline

I. Mostly experiment

- 1. Introduction and experimental tools
- 2. Beam-surface interactions
- 3. Absolute measurements of gas and e-
- 4. Plasma oscillations

Electronic gas desorption scales with (dE/dx)², like electronic sputtering

Conventional sputtering driven by large-angle nuclear scattering

Electronic sputtering more copious.

- Well known for ions onto thick insulating layers,
- Scales with (dE_e/dx)ⁿ
 where 1≤n≤3.

Electronic desorption, $n \approx 2$.

Molvik, et al., PRL ~2/9/07

Developed model for ion-induced electron yield scaling with beam energy and angle of incidence*

Model electron yield (electrons/ion) versus

- ion energy
- angle of incidence

Reasonable agreement with our measurements

Not $1/\cos\theta$ at these lower ion energies

Modified Sternglass model** evaluated with TRIM code

$$\gamma_e \propto$$

$$\frac{\delta}{\cos(\theta)} \left(\frac{dE}{dx}\right)_e$$

* Michel Kireeff Covo, PRSTAB 9, 063201 (2006).

** E. J. Sternglass, Phys. Rev. 108, 1 (1957).

The Heavy Ion Fusion Science Virtual National Laboratory

We measure velocity distribution of desorbed gas

Observation: desorbed gas in beam emits light

 \bigvee

View expanding gas cloud from side – $f(v_0)$ normal to target [with gated camera]

Future – absolutely calibrate camera to determine desorption yield, apply technique to non-evaporable getter (NEG)

The Heavy Ion Fusion Science Virtual National Laboratory

Line integral of images indicates an expansion velocity of up to a few mm/µs

Estimated velocity: Slope $\sim 1 \text{ mm/}\mu\text{s}$ **Axial distance Corresponds to** room temperature H₂, consistent

Time

with residual gas

measurements

Outline

- I. Mostly experiment
 - 1. Introduction and experimental tools
 - 2. Beam-surface interactions
 - 3. Absolute measurements of gas and e-
 - 4. Plasma oscillations
- II. Mostly theory and simulation

We measure electron sources - ionization

1. Ionization of gas by beam $(n_e/n_b \le 3\%)$

Beam current known; from expelled ion current infer

- Ionization rate
- Also, gas density in beam

We measure electron sources – walls

Electron emission beam tube $(n_e/n_b \le 7\%)$

3. Electron emission – end wall $(n_e/n_h, 0, 100\%)$

-30

Clearing electrode-c bias

6 kV

10

Outline

I. Mostly experiment

- 1. Introduction and experimental tools
- 2. Beam-surface interactions
- 3. Absolute measurements of gas and e-
- 4. Plasma oscillations
- II. Mostly theory and simulation

Electron oscillations – simulation & experiment agree

Summary – We have established a sound basis to understand and mitigate electrons and gas

- Increased understanding of beam-surface interactions
 - Electron emission measured and modeled, ∝ dE_e/dx
 - Discovered gas desorption $\sim (dE_e/dx)^2$
- Major electron sources measured:
 - Wall emission from beam-scrape-off dominates (~7%) +gas
 - End-wall emission suppressed to ~0% (if not suppr. ~80%)
 - Gas ionization small (~3%)
- Absolute measurement of e- accumulation as function of time
- Electrons bunch, generating oscillations
 - Simulation & experiment agree freq., wavelength, & amplitude
 - Experimental validation of simulations provides credibility

